EHR

A nationwide deep learning pipeline to predict stroke and COVID-19 death in atrial fibrillation

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center }

Association of COVID-19 with arterial and venous vascular diseases: a population-wide cohort study of 48 million adults in England and Wales

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } 📺 BHF Data Science Centre seminar by Dr Samantha Ip & Dr Hoda Abbasizanjani

Understanding COVID-19 trajectories from a nationwide linked electronic health record cohort of 56 million people: phenotypes, severity, waves & vaccination

❗ Now published in The Lancet Digital Health Johan H Thygesen, Chris Tomlinson, Sam Hollings, Mehrdad Mizani, Alex Handy, Ashley Akbari, Amitava Banerjee, Jennifer Cooper, Alvina Lai, Ken Li, Bilal Mateen, Naveed Sattar, Reecha Sofat, Ana Torralbo, Honghan Wu, Angela Wood, Jonathan A C Sterne, Christina Pagel, William Whiteley, Cathie Sudlow, Harry Hemingway, Spiros Denaxas, on behalf of the CVD-COVID-UK Consortium (2022).

Evaluation of antithrombotic use and COVID-19 outcomes in a nationwide atrial fibrillation cohort

❗ Now published in Heart Alex Handy, Amitava Banerjee, Angela Wood, Caroline Dale, Cathie Sudlow, Chris Tomlinson, Daniel Bean, Johan H Thygesen, Mehrdad A Mizani, Michail Katsoulis, Rohan Takhar, Sam Hollings, Spiros Denaxas, Venexia Walker, Richard Dobson, Reecha Sofat & CVD-COVID-UK Consortium (2022).

Linked electronic health records for research on a nationwide cohort of more than 54 million people in England: data resource

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center }

CVD-COVID-UK/COVID-IMPACT Consortium

Contributing clinical experience, data wrangling and analytical skills to development of COVID-19 Severity phenotypes from linked EHR data for 54 million patients in England.